
i:iii,:i, ......... 

Acta Cryst. (1981). A37, 609-616 

Diffraction Pattern of Crystals with Numerous Stacking Faults 

BY C. MARTI,* P. THOREL t AND B. CROSET 

Institut Laue-Langevin, 156X, 38042 Grenoble CEDEX, France 

AND A. BOURDON 

Laboratoire de Luminescence, Universitd Pierre et Marie Curie, 75230 Paris, France 

(Received 24 July 1980; accepted 5 February 1981) 

609 

Abstract 

A model for crystals with stacking faults is given; it 
takes account of interaction up to the vth neighbor; it is 
reduced to a first-order Markov chain. It is shown that 
the diffraction pattern can be split into spots, the shape 
of which depends on three parameters (intensity, width, 
'asymmetry'). Group theory is used. Application is 
given for hexagonal-rhombohedral stacking faults (as 
in graphite) for interactions up to third order. 

Introduction 

Stacking faults can produce diffraction diagrams quite 
different from those of perfect crystals, when they are 
numerous; this is especially the case in lamellar species 
such as graphite, clays, heavy-metal halides or 
chalcogenides. 

Models have been given only for some simple cases. 
M6ring (1949) has treated the case where the stacking 
faults are only translations, the probabilities of which 
are governed by a single factor; i.e. when this 
probability depends only upon first-neighbor interac- 
tion. It can be also applied to rhombohedral faults in 
hexagonal stacks (or the reverse), i.e. when an ABA 
stack has an ABC fault (M6ring, 1949). It has also been 
applied by Planqon & Tchoubar (1975) to some kinds 
of kaolinites. 

Extension to more general faults (translations and 
rotations) has been treated by Hendricks & Teller 
(1942) and Kakinoki & Komura (1952) and with a more 
powerful method by Planqon & Tchoubar (1976), with 
an application to other kinds of kaolinites. But the 
probability of a fault depends here also only upon the 
first neighbors. 

Planqon & Tchoubar (1976) also consider a long- 
range interaction. Indeed, calculations taking into 
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account further neighbors are needed. For example, in 
graphite M6ring can only produce diagrams with 
widened hexagonal spots or with wide spots near 
rhombohedral spots, but not both of them together. 
Nevertheless, numerous carbon blacks (e.g. exfoliated 
graphite) exhibit the two spot systems together; earlier, 
Wyckoff (1965) explained composite Debye-Scherrer 
diagrams as a mixture of the two types of crystals, but 
as pure rhombohedral carbon has never been observed 
this interpretation is not very satisfactory. 

We show here how to calculate the diffraction of a 
stack of layers with the following conditions: 

the number of layer types is finite; 
the layers are equidistant; 
the probability that a layer is of a certain type 

depends on its first v neighboring layers (interaction 
with the vth neighbor). 

We show that the diffraction figure can be decom- 
posed into a sum of spots with definite shapes, and give 
the applications to hexagonal-rhombohedral stacks 
(generalized compact pile problem) up to the third- 
neighbor interaction. 

The stacks as a Markov chain 

A stack consists of N layers numbered n(n = 1, N). 
Two layers n and m are said to be of the same type if 
they are related by a translation (n -,m)c;$ the number 
of types of layers will be taken as finite. 

We consider an ensemble of such N-stacks where 
layers of the same type iia different stacks are related 
also by a translation; i.e. they have the same orien- 
tation and c is also the same for all stacks. This 
ensemble could be called a 'monocrystalline' ensemble. 
The probability of finding a layer of type i in position n 
is pt(n). Our solutions are given for a sufficiently large 
ensemble (thermodynamic limits). 

It can be shown that when interaction with the v 
neighboring layers is taken into account the stacks can 

For convenience z is taken vertically and a layer can be above 
or under another one but the layers are not necessarily horizontal. 
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be considered as homogeneous Markov chains of vth 
order. But the trick (this point was drawn to our 
attention by D. Revuz) used to study such chains is to 
reduce them to first order by taking as elementary 
events or states not the occurrence of a type of layer, 
but the occurrence of a certain succession of v layers. 
Henceforth we choose as a base the r allowed 
succession of v layers, calling them e i. For example, in 
graphite, layers can be of type A, B or C; for a 
second-neighbor interaction the base will be (AA, BB,  
CC are forbidden) 

e~ = AB; e 2 = B C ;  e 3 = C A ;  

e 4 = A C ;  e s = C B ;  e 6 = B A ,  

AB being a B layer on an A layer. 
We call Pl(n) the probability of finding the layers n to 

n + v -  1 (i.e. in position n) in the state e i. The 
probability that the layers (n + 1) to (n + v) (i.e. in 
position n + 1) are then in the state j is Q j; the 
transition probability matrix Q does not depend on n 
(homogeneity of the chain). Q has numerous zeros 
because the layers (n + 1) to (n + v - 1) must be the 
s a m e .  

The probability of layers n + 2 to n + v + 1 being in 
the s t a te j  when the layers n to n + v - 1 are in the state 
i is (applying Einstein's summation rule) 

i k Qk a j = (Q2)j 

and step by step the transition probability in q steps is 

(aq)J, 

where Qq is the qth power of Q. 
This expression is the definition of a homogeneous 

Markov chain of first order (Takfics, 1964). Note that 
the reduction of the problem to first-order chains was 
not obtained by simply subdividing the stack into 
substacks of v sheets; this method would naturally also 
give a first-order chain but the transition probability 
matrix would be much more tedious to write (fewer 
zeros); indeed it would be Q to the vth power. The 
physical meaning of transition probabilities would be 
more difficult to understand. If the problem has 
sufficient symmetry (e.g. if the layers have a 'horizontal 
plane' of symmetry), the probability of finding j above 
or below i is the same. This is always the case in the 
examples of the Introduction; thus q may be negative 
but Q has to be raised to the power I ql, the absolute 
value of q. But this is not necessary (polar crystals), and 
probabilities in the opposite directions may be different. 

Now the best way to solve problems in Markov 
chains is to solve the eigenvalue problem of the 
transition probability matrix Q 

i j 4kAlk Q ' j A k  - 

o r  

(Underlined indices do not obey the Einstein sum- 
mation rule.) If each eigenvalue is simple, A is diagonal; 
if not, A can be divided into smaller matrices of the type 

4 1 0 0 0 

0 4 1 0 

0 0 0 0 4 1 

0 0  0 0 0 4  

In all cases A is not singular; it is therefore possible to 
write 

Qq= ( A A A - * ) ( A A A - ~ ) . . .  (AAA -1) 

= A A  q A -1. 

As Q is real the eigenvalues and eigenvectors are real or 
conjugate. As Y j Q~ = 1, one _eigenvalue is always 41 = 
1 with eigenvector A~ - 1 /~ / r  and no eigenvalue has a 
modulus greater than 1. 

We shall make the hypothesis that the chain is 
irreducible, i.e. a state can always be reached from 
another state; when the chain is reducible a closed set of 
states exists, i.e. a subspace in which the study can be 
done independently of the other states. 

If there is no stacking fault, i.e. if the stacks are 
perfect crystals, for each i only one Q~ :~ 0 (and 
therefore is equal to 1). If the chain is irreducible other 
eigenvalues than 41 with modulus equal to 1 cannot 
exist, except if the stack is a perfect crystal. We shall 
also suppose that the probability distribution P~(n) is 
stationary, i.e. 

Pi(n) =- Pv 

P~ is a solution of 

o r  

= Pj Q J, 

1 
P, = - ~  (A-1)~. 

This hypothesis can be false for perfect crystals (for 
example, in graphite, layers alternate) but in other cases 
we think that it is equivalent to the thermodynamic 
limit. On the other hand, the distribution 

P~ = (A-')~I ~ (A-')~ 
r = l  

would decay as (2r)n and one can introduce for it a 
coherence length r = 1/(4r). 

The diffraction problem 

We want to calculate the intensity of diffraction for a 
diffusion vector 

QA = AA.  X-- ha* + kb* + lc*, 
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a* and b* are orthogonal to e and 

e* = 2n(a x b)/(a,b,e). 

When the layer is a piece of a two-dimensional crystal 
(with possibly some thickness) a* and b* are the base 
vectors of the two-dimensional reciprocal lattice. But 
our calculation can be applied to liquid layers or even 
nonplanar layers. We shall call the diffraction am- 
plitude of a state the amplitude for only the lower sheet; 
i.e., for a state i in position n (layers from n to 
n + v -- 1) it is ~oi(hkl) exp (2inln). 

The intensity of diffraction of a certain stack is 
N 

~*(m) ~(m') exp[Einl(m' -- m)], 
m , m ' =  l 

where if(m) is the amplitude of diffraction of the mth 
layer. The physical quantity is the mean intensity on the 
set of stacks. 

We invert the order of summation; i.e. instead of 
summing in one stack over each pair of layers in 
positions m and m', and then summing over all possible 
stacks (we can also say on all configurations of sheets), 
we are allowed to choose first a pair of positions to sum 
over all configurations and then only to sum on the 
pairs of layers. More precisely, we choose m and m' 
and the states i and j, to which the layers belong, 
contributing to the intensity by 

~0~ ~1 exp [2inl(m' -- m)]. 

We calculate the number of configurations for which 
the layers m and m' are in the state i and j (or, better, 
the probability of these configurations); then we are 
only left with summing over the pairs of states and the 
pairs of positions. 

Suppose that m' > m. The probability of finding 
states i and j in positions m and m' is the probability of 
finding state i in position m, i.e. Pi(m), multiplied by the 
probability of thereafter finding the state j in position 
m', i.e. (Qm,-m)~. The probability of the pair is 

pi(m ) m'-m t (Q )y. 
Now if m' < m we begin with m' and the composite 
probability is 

Pt(m 0 (Qm-m,)ij. 

As Pt(m) = Pl(m') = Pt in boti~ cases the composite 
probability is 

Irn'--ml 1 Pt(a )j. 

This formula could have been found immediately in the 
case of sufficient symmetry (non-polar sheets). 

On the whole, the mean intensity is 

N 

I (hk l )=  • ~ P!(n)(Q'n-m')~. 
n , m = l  t = 1  

x ~o i-" (hkl) ~(hk l )  exp [2ird(n - m)] 

(j varies as i from 1 to r). 
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This formula is similar to the calculation in Planqon 
& Tchoubar (1976), but here the summation is over 
states and not layers; for first-neighbor interactions 
they are identical. 

In Planqon & Tchoubar (1976) a summation of the 
powers of Q is made. They introduce (E - Q)-I, with E 
the identity matrix; as Q always has a unity root this 
formulation is in principle mathematically forbidden. 
We prefer to use first the diagonalization of the matrix, 
which overcomes the mathematical difficulty, but 
mainly shows how the diffraction figure can be split into 
spots with more physical meaning. The mean intensity 
is then 

N 

I(hkl) = ~ ~ Pi_Ai-k (A'm-n') k, 
m , n =  l l = 1  

x (A-1)J ' #*(hkl) ~pJ (hkl) 

x exp [2in/(n - m)]. 

To simplify the expression we shall now suppose that 
A is fully diagonal. The generalization to multiple 
eigenvalues is straightforward; A is the matrix of 
coordinate changes. We introduce 

Ur(hkl) = ~ tp t-* (hkl) Pi hi (A-')~ (O j (hkl), 
1=1 

then 

I(hkO = Z Ir 
r 

with 

N 

Ir(hkl) = Ur(hkl) ~. 2'/'-m' exp[2 in l (n -  m)]. 
n , m =  l 

Note that 

~i(hkO -- ~e(hkb; 

for real or conjugate eigenvalues A/r and (A-1)~ are 
real or conjugate; i.e. 

Ur(hkO*= Ur.(hkb 
and 

lr(hkl)* = Ir.(hkl) 

(r* labels U and I for 2*). Note also that 

Ur(hkl)= ~ ~o~ (hkl) PL Ju~J(hkl) 
r l = 1  

= ~. PL q~'-" (hkl) ~pL(hkl). 
t = l  

In most cases different types of layers have the same 
~o~(hkl) ~oC(hkl) --- g~(hk_/); this is especially the case for 
stacking faults. Then ) r  Ur(hkl) = rP(hkl) does not 
depend on the probability transitions. 
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Decomposition of the diffraction 

We sum over m and n in I r (hkl will be generally 
omitted); the 2 r are the (diagonal) matrix elements of A. 

[2 r exp (+2i~zl)] m + 1 
r n = l  m = l  

N--n  

m----1 

N {  1+  

2 1 

[2 r exp (--2iz~l)] m} 

~'r exp (2i~zl) 1 + 2 r exp (--2izcl) 
+ 

-- 2 r exp (+ 2izd) 1 - 2 r exp ~ )  

[2 r exp (+2izr/)] N+ 1 _ 2r exp (+2izd) 
+ 

[2r exp (+2izd) - 1] 2 

[~,r exp (-2izd)] T M  -- 2r exp (--2izd) 
+ 

[~'r exp (--2#r/) -- 1] 2 

when 12rl = 1, i.e. 2r = exp (iOr), the real part of the 
first term is zero. The real part of the last terms is 

sin 2 (2zcl + Or)N sin 2 (2~z/- Or)N 
+ 

sin 2 (2re/+ Or) sin 2 (2zr/-  0r) 

We retrieve the shape of spots of a perfect crystal (U r 
has to be real). If 12rl < 1 a n d i f N  >> 1/(1 -- 12rl) the 
last terms can be neglected. If we put ;t, r = PreXp (iOr) 
and Ur = u~ exp (i~u~), the real part of Ir can be split into 
two parts, say into two spots. The first one is 

N cos 2,r{ 1 - p2 } _ 2p r sin ~ sin (O r + 2rd) 

- 2  Ur 1 + p2 _ 2p r cos (O r + 2n/) 

In the second part I is replaced by (- l) .  Note that the 
integrations over l on 2n domains gives u r cos ~ = 
R(Ur), which does not depend on 2 r, i.e. on the shape of 
the spot; when q~(hk/) does not depend on l (layers 
without thickness), recalling the sum rule on Ur, we 
can demonstrate that stacking faults do not change the 
intensity of diffraction integrated over l. 

when 2 r is real the two parts reduce to 

1-p  
NU~ cos ~r 

1 + pZ r -- 2p r COS 2Zd" 

If the layers have no thickness, ~,r does not depend on l; 
we find spots centered at (h,k,L) if Ar > 0, or at 
(h, k, L + ½) if 2 r < 0 (L integer); maximum intensity 
is 2NUrCOS ~r (1 - p~r/(1 + p2r) and their full width 
at mid-height (FWMH) is given by 

(Pr-/)2 
cos 2zd = 1 

2p~ 

when ar = (1 - Pr) is small a good approximation is 

N 2a~ 
2 ur cos qlrarq_2 l~2 ; 

the F W H M  is 2a r and corresponds to the coherence 
length L r. 

When 2 r is complex two spots arise (but the 
conjugate eigenvalues give the same spots). In the case 
of layers without thickness, the extrema are at 

( ~)  1-- p (cos ~ +_ l) 
tan zd + = 

- 1 + p sin ~, 

Such spots are asymmetric. Some parts of some spots 
may be negative but naturally the sum over all spots is 
always positive. 

Note that when the layers have a thickness the 
precise shape of the spots can be modified by the 
dependence of U on L 

Use of group theory 

To simplify the diagonalization task with the use of the 
symmetries in the problem let S be the symmetries 
which transform any layer into itself or another layer; 
they build a group {S} which leaves Q invariant. The 
matrices of the transformation of the states by these 
symmetries build a representation of {S}. The coordi- 
nate transformation which reduces this representation 
also reduces the matrix Q. 

But { S} can be very large. It contains the symmetries 
T which transform any layer into itself and have no 
effect on the states; they are of no interest in our 
problem. 

Let {R} be the quotient of {S} divided by {T}; it is 
homeomorphic to a group of permutations between the 
sheets and contains all the information we need (in 
many cases all the permutations are at work, i.e. leave 
Q invariant). When all successions of v sheets are 
allowed, their representation ~ on the space of states is 
the vth power of the regular representation; if some 
substacks are forbidden it is smaller. 

We write the reducing change of base 

fr, a,p = e~ B'r~,~. 

F is an irreducible representation of {R}, a a compo- 
nent of F and fl another index, necessary when F 
happens more than once. 

The B's are analogous to Clebsch-Gordon 
coefficients. 

Considering { R } as a group of permutations between 
the layers, we can show that ~ '  is unitarian; hence the 
change of base is also unitarian. 

To construct the f, we use the Van Vleck projectors 

r ( F , a ) =  Z FT,(R)R, 
REG 

with/'j. (R) the standard matrix for R in/ ' .  
The invariant matrix Q is reduced by this coordinate 

change. The eigenvalue problem is now split into 
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equations, the degree of which is the number of times a 
representation occurs (maximum value of index fl for 
/-). When a representation is of degree y the root has a 
multiplicity y; this multiplicity does not lead to 
non-diagonality; non-diagonality arises only when the 
same representation occurs many times with accidental 
degeneracy (even then it does not necessarily occur). 

Each eigenvalue subproblem leads to a diagonalizing 
matrix C(F,a); the combination of this matrix will be 
called C and the diagonalizing matrix from ab initio is 

A =BC.  

It will be useful to introduce the vectors 

v k =  y ~o:" P:s~ 
l 

wk= (B-')~ ~o:; 

then the vector U is 
--1 r u , =  v~ c~ ( c ) ~ ,  w ~' 

-- 

Generally, the sheet amplitude diffraction vector q~ 
belongs to a component of representation F of G; the 
coordinates of W are zero except for those correspond- 
ing to F and we need only to calculate 

and then 

w~ = (B-t)[,~,~ ~oJ 

= PtB?,,~,~ 

v~ = v~ c(r,o~ c-t(r,o~, wet 
where the 2p are the roots for only the representation/2 

The vector P~ of the stationary distribution of 
probabilities is also invariant of G and belongs to Ft. To 
find it it is sufficient to diagonalize C(Ft) and then 

ADi= C - - l ( / " l ) ~  ' ( B - 1 ) [ o / ~ / V / ~ .  

Stacking faults in generalized compact crystals 

We described graphite as a stack of layers of three 
types, A, B and C. The succession of two layers of the 
same type is forbidden. A compact crystal of hard 
spheres can be described in the same way if stacking 
faults are taken into account only in one direction; the 
perfect crystals made by repetition of AB or ABC are 
then hexagonal or c.f.c. The cubicity is not needed, the 
value of C is not relevant and the repetition of ABC 
may only give a rhombohedral crystal. For the moment 
nothing has to be known about the structure of the 
layer as long as the probability of occurrence of a stack 
is invariant by a permutation of A, B, C. 

The permutation group of three objects has six 
operations in three classes E, C and S. 

C is cyclic on the three objects; we choose Ct(A) = 
B etc., C 2 = C I t .  

S permutes only two objects; we choose that A is 
invariant in $1, B in $2, C in S 3. 

The table of characters is 

I"1 
r~ 

/'3 

E C S 

1 1 1 

1 1 --1" 

2 --1 --1 

We also need a standard representation for F3: 

G(Cl)=  f ; G(c~)= ; 

0 

(: 
With Van Vleck projectors on A, B, C, we find that 

(A + B + C)/V/3 is a base for F1 
(A + jB + Cj2)/V/3 and (A + j2B + ]C) /v /3  is a 

base for F 3 in the chosen standard representation. 
This permutation group is homeomorphic to C3v. 
Now we suppose (as is true in the above examples) 

that the sheets are crystalline with base vectors a and b 
and that B can be deduced from A by the translation 
a/3 + 2b/3 and C by the reverse. 

If the diffractional amplitude is b for A, then it is 
b exp [2irc(h + 2k)/31 for B and the conjugate for 
C (b depends on hkl). 

If h - k = 0 [3], ~0~ -- b and belongs to/ '1 ;  it is then 
straightforward, if tedious, to show that only the 
eigenvalue F 1 is at work and Uat = bb*. This means 
that these lines are not altered by the stacking faults, as 
expected. 

I fh  - k = 1 [31, qis  b for stacks beginning with A, bj 
for stacks beginning with B and bj 2 for the others; it 
transforms as the first component of F 3. 

If h - k = f [31, the amplitudes are conjugate and 
transform like the second component of F 3. 

Interaction with the first neighbors 

The invariance of Q means that the successions AB and 
A C are equiprobable. The probability matrix is 

½ 0 . 

½ ½ 

With the base from the previous paragraph, it becomes 

t: ° 
- - ½  . 

0 
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1 belongs to / ' 1  and -½ to the two components of F 3. 
The stationary distribution is (~,]r).l 1 

For (1,0,l), U = bb*, a fairly widened spot is centered 
at 1,0,½ + L (L integer); the same result is obtained for 
(0,1,/). In a pure hexagonal crystal one finds spots 
1,0,L with intensity b2/4 and spots 1,0,L + ½ with 
intensity 3b2/4. 

The disorder lets the 1,0,L + ½ spots grow at the 
expense of the 1,1,L spots• It must be noted that the 
disorder is limited to a choice between three positions 
with the further restriction that neighboring sheets 
cannot be the same. For more complete disorder the 
intensity would be constant along the (1,0) reciprocal 
rod. The growth of the 1,0,½ spot at the expense of the 
100 spot was also observed in a Monte-Carlo test. The 
total intensity of the 101 lines is unchanged. As was 
foreseeable the lines 111 are not sensitive to disorder• 

No rhombohedral spots are to be seen. The same 
results are obtained for the other hkl spots depending 
on h + k being equal to a multiple of 3 plus 0, 1 or 2. 

In terac t ion  wi th  the  s e c o n d  n e i g h b o r s  

We take the two-sheet combinations mentioned above 
as base. We need to construct the results of operations 
of C3v o n  this base. 

Cl  el = e2; C1 e2 --  e3; C 1 e3 = el; 
Cl  e4 = e6; C1 e5 = e4; C1 e6 = e5; 

C2 el  = e3; C2 e2 --  e l ;  C2 e3 --  e2; 
C2 e4 = es; C2 e5 --  e6; C2 e 6 - -  e4; 

$1 el  = e4; S1 e2 --  es; Sx e3 --  e6; 
$1 e4 = el ;  S 1 e5 = e2; S1 e6 = e3; 

S 2 el = es; S 2 e2 ---- e6; $2  e3 = e4; 
$2 e4 -- e3; $2 e5 = el; $2 e6 = e2; 

$3 el -- e6; S 3 e2 -- e4; $3 e3 -- es; 
S 3 e4 -- e2; $3 e 5 = e3; $3 e6 = e I. 

The Van Vleck projectors give the new base 

fi = (el + e2 + e3 + e4 + es + e6)/V/6 
f2 = (el  -I- e 2 "+- e 3 - -  e 4 - -  e s - -  e 6 ) / v / r 6  

f3 = (e l  + j e 2  + j2  e3 ) /V/~  

f4 = (e4 + j2  e5 + j e 6 ) V / ~  

f,  = (el --I- j2 e2 "F je3)/V/~ 

f~ = (e~ + de5 + j ~  %)Iv:L 

fl belongs to F l, t"2 to/ '2;  f3 and f4 are transformed like 
the first component of/ '3, and 1'5 and t"6 like the second. 
The inverse transformation is readily found as it is 
unitarian. 

The probability transition matrix is 

0 v 0 0 0 u 

~ 0 v 0 u 
0 0 u 0 O0 

0 u 0 v 0 ' 

u 0 0 0 

u 0 0 v 0 

where v is the probability of a rhombohedral stacking 
fault in the hexagonal stacking (u + v = 1). 

On the new base it becomes 

U + D  

U - - D  

j2v j2u 

ju jv 
jv ju 
j2 u j2 

The stationary distribution is readily seen to correspond 
to equiprobability. In the restricted space (f3,f4) we can 
do all the calculus for the 101 spots. The V and W are 

(:t ( 1t • 
The eigenvalues are 

v _+ (4u 2 -- 3v2) 1/2 
2 + = - -  

2 

C(F3) = 2+ _ j2  v 2 - - j 2  v 

C_,(F3 ) = 1 [ 2- _ j 2  v 

(2- - 2+)uj \_2+ +j2 v 

(neglecting the normalization here), then 

1 ( u )  
V+(IOI) = ~  I -4- 

_ _ ; t _ _  2 +  • 

If u > v V/3/2 the ~. are real; in the (fs,f6) space, one 
also finds 

U+ (O, I ,1) -- U+(1,O,1). 

For u > ½ the spots are centered on all the pure 
hexagonal spots but widened; the 1,0,½ + L spots are 
enhanced at the expense of the 10L spots and less 
widened than the latter• For u = 1 the intensities b2/4 
and 3b2/4 of the pure hexagonal crystal are found as 
expected• 

For u = ½ the 10L spots have disappeared: this is the 
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case of total disorder (case of interaction with the first 
neighbor). 

For u less than ½, but still greater than vv/~, two very 
large spots are centered on the 1,0,L + ½ hexagonal 
spots• 

For u < v V/~ the 2 becomes complex; the intensities 
of U÷ and U_ become equal to b2/2. 

For u = 0, we find the rhombohedral  spots at l -- 
and l = }. [In a rhombohedral crystal one finds a spot 
1,0,~ with intensity b 2 or else a spot 1,0,~; but in the 
model symmetric stacks are taken into account 
together.] 

When u grows, the spots widen, are displaced in the 
direction of 1,0,½, symmetrically, but each of them 
becomes asymmetric. 

On the whole an interaction with the second neighbor 
cannot explain the simultaneous presence of the two 
systems of spots, hexagonal and rhombohedral.  

Interactions with the third neighbor 

We choose the base 

r I = A B C  r 2 = B C A  r 3=CAB 
r~ = A CB r~ = CBA r'3 = BA C 
h , = A B A  h 2 = B C B  h a = C A C  
h~ = ACA h' 2 = BAB h' 3 = CBC. 

Van Vleck operators give 

1 
f , - -  - ~  (r, + r 2 + r 3 + r~ + r~ + r~) E F,  

1 
f 2 - - ' ~ ( h l +  h2+ h 3 + h ~ + h  i + h ~ ) E / ' l  

1 
f3 = " ~  [(rl + r2 + r 3 ) -  (r~ + r~ + r~)] E I'2 

1 
f4--  ~ [(h, + h 2 + h3) -- (h~ + h i + h~)] E / ' 2  

1 
f5 = ~ (r, + j r  2 + j2 ra ) 

1 
f6 ---- ~ (h, + j h  2 + j2 h3 ) 

V 0 first component 
1 ofF3. 

f7 = " ~  (r~ + j2 r~ + jr~) 

I 
fs = " ~  (h~ + j2 hl + jh~) 

f9 to f12 are f5 to f8 withj changed toj 2 and belong to the 
second component Gf F 3. 

A rhombohedral substack r or r' is followed by 
another rhombohedral substack r or r' with probability 

v, and by a hexagonal one h or h' with probability t = 
1 - v. A hexagonal substack h or h' is followed by a 
hexagonal substack h' or h with probability u and by a 
rhombohedral substack r' or r with probability s = 1 - 
u. 

It is easier to write directly the transition probability 
matrix on the new base than to make the change of 
coordinates; in particular we can omit working on f3 
and f4 as the representation/ '2 does not show up. On f, 
and f2, Q becomes 

(: :t 
The eigenvalues 1 and u -- t; the eigenvalue 2, = 1 gives 
the stationary distribution: rhombohedral and hexag- 
onal stacks have the probabilities s/(s + t) and 
t/(s + t): 

From t"5 to fg, 

V/3= 

and 

W~ = bv/3 

Q becomes 

b* 

Ill 1 

1 

1 

(S, t, S, t) 

The eigenvalues are solutions of 

22(22 + 2v + v 2 -- u 2) -- 2u~ -- ~2 = 0, 

with 8 = uv - st = v - s. 
When e > 0 a rhombohedral stack has more chance 

of being followed by a rhombohedral stack than a 
hexagonal one has; this is a model somewhat analogous 
to a long-range ordering which favors the rhombohed- 
ral stacking. 

e ( 0 corresponds to a long-range favoring of 
hexagonality. 

e = 0 is equivalent to a second-neighbor interaction. 
For small e, we have two eigenvalues near these and 

two small eigenvalues 

u _ (4v 2 -  3u2) 1/2 
8 

2(v 2 - u 2) ' 

the corresponding intensities are also of first order in e: 
i.e. when u - 1, small and wide rhombohedral spots 

t 
vj tj 2 0 0 

sj: ujO0 sj 2vjO uJ i / "  
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appear together with the hexagonal spots (calculated 
with the second-neighbor interaction); when u - 0, 
small and wide hexagonal spots appear together with 
the rhombohedral spots. 

Further investigation needs numerical calculation. 
Some results are shown in Fig. 1. Some remarks can be 
made: 

Two eigenvalues are always real and the two others 
are complex, i.e. spots always appear at hexagonal 
normal places; the complex eigenvalues give spots near 
rhombohedral places but always displaced (except for a 
perfect crystal). 

The smaller the modulus of an eigenvalue, the smaller 
also is the intensity of the corresponding spot. 

Disorder always favors the 10~ spot at the expense 
of the 100. 

Comparison with experiment 

A 'monocrystalline' ensemble could perhaps be realized 
by epitaxial growth. But samples with many stacking 

. . . .  I . . . .  I 
20 00~ 22. 000 

THE "FA 

Fig. 1. The 10l lines of papyex. + Experimental points obtained 
with the Ka line of copper at 1.5418/~. ~ Calculated curve 
for u = 0.8 and v = 0.72. 

faults appear mainly as powders. A numerical in- 
tegration along the rods must be performed as 
described by Brindley & M6ring (1951); our calculation 
showed that direct multiplication by the Laue-Warren 
function (Warren, 1941) is not sufficient. Classical 
factors such as Debye-Waller factors and a 
polarization factor for X-rays must naturally also be 
included. We have analysed the 101 lines of papyex, a 
recompressed ex-foliated graphite from Carbone- 
Lorraine. In this sample about half of the crystallites 
are preferentially oriented. The distribution of the c axis 
has a FWMH of 36°;  it was taken as Gaussian and 
included in the fit. The diameter of the layers is 230 A 
from the analysis of the 110 peak. 

We found that the propensity to retain hexagonal 
stacking is u = 0.8 + 0.02, but the propensity to stay 
rhombohedral is not much smaller, v = 0.72 + 0.02; 
the fit is quite sensitive to u-v  = 0.08 + 0.05; e is not 
at all small (~0.5): third-neighbor interaction is very 
important. The best fit is given in Fig. 1. 

We wish to thank Professor Revuz for discussions 
during this work and M. de Bergevin, Brunel, Gremi, 
Patrat and Ceva for providing the X-ray pattern. 
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